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This paper considers problems on the rolling of rigid driven and driving cylinders slipping on a compactible
viscoelastic base. As a result of the investigation of the process of propagation of viscoelastic decaying strain
waves in a deformable medium caused by a cylinder rolling over it and the action of the sliding friction
forces, formulas and calculation algorithms have been obtained for determining the indices of the stressed-
strained state and compactness of the base, the rolling resistance of the driven and diving cylinders, and the
driving force of the driving cylinder. Calculations of these indices have been performed for the cases of cyl-
inders rolling over a soil whose viscoelastic properties have been investigated experimentally.

The problem of rolling friction is very important in mechanics. Many investigations have been carried out in
this area [1–12]. However, this problem has not been solved completely. In [5–7], a review of some of the results ob-
tained is given. The problems on the rolling of a rigid, an elastic, and a viscoelastic cylinder over a plastic, an elastic,
and a viscoelastic base have been considered. In [2–7], as in a number of other works, the contact arc was taken to
be small compared to the cylinder radius, and the boundary conditions were given on a segment of a straight line.

This paper presents the results of an investigation of the rolling of circular rigid cylinders over a compactible
disperse base. We took into account two main factors of the appearance of the stressed-strained state of the base and
the rolling resistance — the viscoelastic properties of the deformable medium and the sliding friction on the contact
surface of the cylinder and base. Unlike [2–7], the contact line is considered by us as a circular arc (i.e., the actually
existing one), and is not replaced approximately by a segment of a straight line or a parabolic arc. The boundary con-
ditions are given on a circular arc.

Let us consider the rolling with negative or positive sliding (hereinafter referred to as sliding or slippage, re-
spectively) of a rigid circular cylinder of radius R over a horizontal surface of a dispersive medium. The velocity v0
of the cylinder axis and its angular velocity ω are assumed to be constant. The slippage coefficient of the cylinder δ
= 1 − v0

 ⁄ ωR. The deformable layer of the medium is extended to depth H.
Let us introduce a stationary and a rectangular coordinate systems Oxyz and O1x1y1z1. The origin O of the

stationary coordinate system coincides at the initial instant of time t (at t = 0) with the point A at which the cylinder
comes into contact with the base. The direction of the horizontal axis Ox passing over the base surface coincides with
the direction of motion of the cylinder axis; the Oy-axis is directed vertically downward; the Oz-axis is parallel to the
cylinder axis (perpendicular to the plane) (Fig. 1a). The velocity v0 is codirected with Ox. The coordinate system
O1x1y1z1 with the origin at the point O1 located on the cylinder axis moves together with its axis with velocity v0:
O1x1�Ox, O1y1�Oy, O1z1�Oz. Let us also introduce a cylindrical coordinate system R, ψ, z1 with a pole at the point
O1 whose polar axis coincides with the O1y1-axis, and the O1z1-axis coincides with the corresponding axis of the rec-
tangular coordinate system. The polar radius of any point located on the cylinder-base contact line is equal to R. At
x1 ≥ 0 the polar angle ψ ≥ 0, and at x1 < 0 the angle ψ < 0.

Let the density of the deformable medium be ρ = const at all y ≤ H. The cylinder length L is taken to be
large enough; therefore, the deformation of the base is approximately plane. The cylinder-base contact line in the lon-
gitudinal section of the cylinder is a circular arc BCA.
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The cylinder is subjected to the action of the forces applied to it — the vertical force G and the horizontal
force F, the torque M, and the reactions of the base. The reactions distributed over the contact surface are replaced by
the resultants — the vertical force N and the horizontal force T. The values of N and T depend on the viscoelastic
properties of the base and the sliding friction forces on the contact surface. In the driving cylinder, the directions of
M and ω coincide, δ > 0, and the reaction T is directed towards the motion of the axis. For this case, we took T > 0
and the value of the driving torque M > 0. In the driven cylinder, M and ω are opposite, δ < 0, T < 0, and the drag
torque M < 0.

The elementary reactions of the base (contact stresses) distributed along the contact line have at each point of
this line radial (normal) σσr and its tangential ττ components (Fig. 1b). The values of the horizontal and vertical com-
ponents of the contact stress are

X = − σx % τx ,   Y = σy % τy , (1)

where τx = τ cos ψ; τy = τ sin ψ; σx = σy tan ψ. The value of ττ depends on σr, δ, and f. For the two signs "%" in
formula (1) and the following formulas given below, the signs "+" are used for the driving cylinder and "−" for the
driven one.

On the contact line, the deformations of the base and the elementary reactions distributed along it are func-
tions of one variable t or the current angle ψ = ψa − ωt (ψ 2 [ψb, ψa], ψb < 0, ψa > 0). At ψ 2 [0, ψa] compression
of the viscoelastic medium occurs, and at ψ 2 [ψb, 0] its reversible deformation is observed; ψa > ψb. In the depth
of the deformable medium layer (at y > 0), the stresses σy, the horizontal u and vertical v shifts of the medium with
a cylinder rolling over it are functions of y and t: σy = σy(y, t), u = u(y, t), and v = v(y, t).

The relations between the compressive deformation components and the compressive stresses in an isotropic
viscoelastic medium can be described by the following differential equations:

∂εy

∂t
 = 

1 + µ
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∂σy
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Fig. 1. Scheme of the interaction between the driving circular cylinder and the
deformable base (a) and components of the elementary reactions of the base
distributed along the contact line BA (b) (A and B are the points at which the
cylinder comes into contact with the base and goes out of this contact; BCA is
the cylinder-base contact line (circular arc of radius R); C is a point of the
BCA line situated on the Oy1-axis).
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(2)

If the relation between the time-variable compressive stresses and deformations is revealed on the basis of die tests
performed with the possibility of lateral expansion on the medium, then for generalized mathematical modeling of this
relation one equation can be used. For the rolling cylinder, the stresses σx at the contact line points are expressed in
terms of σy; therefore, the first equation in system (2) can be replaced by a differential equation whose right-hand side
includes only the component σy and its time derivative. Using the results of the investigations of [8–11, 13], we shall
model the mechanism of viscoelastic medium compression in the direction of the y-axis by the differential equation

∂εy (y, t)
∂t

 = 
1

q
 




∂σy (y, t)
∂t

 + pσy (y, t)



 . (3)

The parameters p and q of Eq. (3) are characteristics of the viscoelastic properties of the medium. They complexly de-
scribe the viscoelastic properties of the medium without dividing it into an elastic and a viscous components and take
into account its lateral expansion under the action of a load. In the case of deformation by the harmonic mechanism,
p = ωg, where ω is the frequency of this deformation process. The characteristics g = p ⁄ ω and q depend on the den-
sity ρ of the medium, its humidity w, and the frequency ω.

The compressive deformation of the base propagates to a depth Hp ≤ H. The finite relative compressive defor-
mation of the base at the contact line points is

εy (0, ψ) = h (0, ψ) ⁄ Hp = R (cos ψ − cos ψa) ⁄ Hp , (4)

where h(0, ψ) = R(cos ψ − cos ψa) is the absolute compressive deformation (settlement) of the base. Using (3), (4)
and the boundary conditions σy(0, ψa) = 0 and σy(0, ψb) = 0, we obtain the formula for determining the compressive
stresses of the medium at the contact line points

σy (0, ψ) = 
qR

Hp (g2
 + 1)

 cos ψ + g sin ψ − (cos ψa + g sin ψa) exp (− g (ψa − ψ)) (5)

and the equation relating ψa and ψb:

exp (− g ψa) (cos ψa + g sin ψa) − exp (− g ψb) (cos ψb + g sin ψb) = 0 . (6)

In the deformation of a viscoelastic medium, a shift of the phases of deformations and stresses is observed:
the points of their maxima do not coincide. For the rolling cylinder, the maximum of the deformation (εy)m corre-
sponding to the points on the contact line is achieved at ψ = 0. We determine the angle ψm at which σy has the
maximum value (σy)m as a solution of the equation obtained from the condition (∂σy(0, ψ) ⁄ ∂ψψ=ψm

 = 0. The stress
(σy)m is determined by formula (5) at ψ = ψm.

On the contact surface of the cylinder, because of the action of the friction forces, zones of adhesion and rela-
tive sliding are formed [4–12]. However, in [2, 4, 8] and other works, the N value is determined without taking into
account the influence of the friction forces between the cylinder and the base. In the present work the friction forces
are included into the N value. In determining N, let us assume that the whole of the contact surface represents a rela-
tive sliding zone, i.e., at all points of the contact line τy = %fσy tan ψ. This conforms to the real cases of cylinder
rolling at certain ψa, ψb, f, and δ. The value of the resultant of the vertical reaction of the base is

N = LR ∫ 
ψb

ψa

(1 % f tan ψ) σy (0, ψ) dψ . (7)
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If besides the sliding zone on the contact surface there are also adhesion zones (in these zones τy < fσy
tan ψ), then N is determined from (7) with a high accuracy (τy << σy and the substitution of τy by a somewhat larger
value on a part of the contact surface has no marked effect on the calculation data).

From the conditions of steady motion of the cylinder it follows that N = G. Taking into account this equality,
by manipulations in (7) we get

G − LR
2
 q [(cos ψb − cos ψa) ⁄ g % f ((cos ψb − cos ψa) + g (cos ψb − sin ψa) + g ln 





tan ((π ⁄ 4) + ψa
 ⁄ 2)

tan ((π ⁄ 4) + ψb
 ⁄ 2)




 −

− (cos ψb + g sin ψb) exp (− g ψb) ∫ 
ψb

ψa

exp (g ψ) tan ψdψ) ⁄ (g
2
 + 1)] ⁄ Hp = 0 . (8)

The integral entering into (8) has been calculated approximately.
For the cylinder rolling in the plane perpendicular to its axis and passing through the middle of the axis, a

planar deformation wave propagates. It consists of a compression wave of the viscoelastic medium caused by the ver-
tical shifts of the medium and a shear wave caused by its horizontal shifts. The medium compression under the action
of the stress σy is described by the differential equation of motion

∂σy

∂y
 = ρ 

∂2
v

∂t
2  . (9)

Taking into account that εy = ∂v ⁄ ∂y, as a result of using (3) and (9), we obtain a differential equation with
third-order partial derivatives which models the compression wave propagation in the viscoelastic medium at ρ = const:

ρ 
∂3

v

∂t
3

 − q 
∂3

v

∂y
2∂t

 + pρ 
∂2

v

∂t
2

 = 0 . (10)

Let us solve Eq. (10) that satisfies the conditions reflecting the physical picture of the interaction between the rolling
cylinder and the deformable medium. We first assume that with a rolling cylinder Hp < H. This permits considering the
region of deformation propagation to be unbounded below, i.e., H → ∞. The cylinder-base interaction time in one ro-
tation of the cylinder about its axis tin = (ψa + ψb) ⁄ ω. The problem in determining v(y, t) at t 2 [0, tin] is as fol-
lows: solve Eq. (10) satisfying the boundary conditions





v (0, t) = R (sin (α0 + ωt) − sin α0) ,
v (∞, t) = 0 ,

     t 2 [0, tin] (11)

and the initial conditions





v (y, 0) = 0 ,
∂v (y, 0) ⁄ ∂t = 0 ,

      y 2 [0, ∞) . (12)

The solution of the problem (10)–(12) was sought on the basis of the results of [14] in the form

v (y, t) = 




0
R exp (− f0y) [sin (α0 + ωt − c0y) − sin α0]   

at   t 2 (− ∞, 0] ,

at   t 2 (0, tin] ,
   y 8 [0, ∞) . (13)

The coefficients f0 > 0 and c0 > 0 should be determined so that (13) is the solution of Eq. (10). In (13) at t > 0 the
shifts v(y, t) ≥ 0.
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Let us substitute the expressions ∂2v ⁄ ∂t2, ∂3v ⁄ ∂t3, ∂3v ⁄ ∂y2∂t obtained from (13) into (10). By manipulations
and setting the coefficients at cos (α0 + ωt − c0y) and sin (α0 + ωt − c0y) to zero, we get the system of equations

ρω2
 + q (f0

 2
 − c0

2) = 0 ,   2qf0c0 − pρω = 0 , (14)

from which we find the unknowns f0 and c0:

f0 = ω √ρ (√g2 + 1  − 1) ⁄ 2q  , (15)

c0 = 
ρω2

g
2qf0

 = ωg √ρ

2q (√g2 + 1  − 1)
 . (16)

Expression (13) with the values of f0 and c0 found by formulas (15) and (16) satisfies the boundary conditions and
the initial conditions.

We determine the propagation depth of compressive deformation of the medium Ht.p which is theoretically pos-
sible at H → ∞ from the condition v(Ht.p, tin) = 0. Satisfying this condition and making use of expression (13), we get

ψa + ψb − c0Ht.p = 0 . (17)

In the formulas obtained the unknowns are ψa, ψb, and Ht.p. They are defined as a solution of the system of
equations (6), (8), and (17) in three unknowns. In solving this system, the depth Ht.p enters into (8). We have devel-
oped an algorithm for solving the system of equations (6), (8), (17) with any given accuracy in given domains of vari-
ability of the unknowns. In these domains, the system is definite. If upon solving this system Ht.p ≤ H is obtained,
then Hp = Ht.p. Using expressions (5), (9), and (13), we find the formula for determining the maximal compressive
stresses attenuating with depth at Hp ≤ H:

σy (y, ψm) = σy (0, ψm) − ρω2
R [(c0 sin (ψm + c0y) −

− f0 cos (ψm + c0y)) ⁄ exp (f0y) + c0 cos ψm − f0 sin ψm] ⁄ (f0
 2

 + c0
2) . (18)

If upon solving the system of equations (6), (8), (17) Ht.p > H is obtained, then it means that the region of
deformation propagation of the medium is bounded below by the value of H, with Hp = H. The boundary y = H ex-
cites a reflected wave [15]. In this case, ψa and ψb are determined as a solution of a certain system of two transcen-
dental equations (6) and (8) in two unknowns.

On the basis of the results presented in [15], in solving the boundary-value problem (10)–(12), we seek Hp =
H in the form of the series

v (y, t) = R 






∑ 

n=0

∞

exp (− fny) (sin (α0 + ωt − cny) − sin α0)






 −

− R 






∑ 

n=1

∞

exp (− lny) (sin (α0 + ωt − rny) − sin α0)






 , (19)

where fn, cn, ln, rn are coefficients which should be determined so that expression (19) is the solution of Eq. (10). Ex-
pression (19) with the found values of the above coefficients satisfies the boundary and initial conditions of the prob-
lem. Each sum in (19) contains a finite number of nonzero terms, since the condition v(y, t) ≥ 0 should be satisfied.

Formula (19) has the following physical meaning. The term obtained at n = 0 describes the wave excited by
the boundary conditions at y = 0 independent of the influence of the boundary y = H, as if the base was deformed to
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an infinitely large depth. The following terms (upon multiplication by R) describe the waves representing sequential re-
flections from the boundary y = H (the second sum multiplied by R) and from the base surface y = 0 (the first sum
multiplied by R). The coefficients fn, cn, ln, rn are determined sequentially at n = 0, 1, 2, ... for each direct and re-
flected wave; f0 and c0 are calculated by formulas (15) and (16).

The viscoelastic properties of the deformable medium are reflected by the coefficient

krev = hrev (0, tin) ⁄ htot (0, tin) = (1 − cos ψb) ⁄ (1 − cos ψa) . (20)

Having determined ψa, ψb, and Hp, we find hres = R (cos ψb − cos ψb), hrev, and krev.
The result of the solution of the problem in determining v(y, t) at t ≤ tin and the numerical values of ψa and

ψb, and Hp have been used to form the initial conditions of the problem in determining v(y, t) at t > tin. It is necessary
to solve Eq. (10) satisfying the boundary conditions

v (0, t) = hres ,   v (Hp, t) = 0     (t 2 (tin, ∞)) (21)

and the initial conditions

v (y, tin) = ϕ1 (y) ,   ∂v (y, tin) ⁄ ∂t = ϕ2 (y) ,   ∂2
v (y, tin) ⁄ ∂t

2
 = ϕ3 (y)     (y 2 [0, Hp]) . (22)

We determine the functions ϕ1(y), ϕ2(y), ϕ3(y) from (13) at t = tin. The problem (10), (21), (22) has been solved ap-
proximately with the use of the results of [15], the Laplace–Carson transform, and the collocation method of [16] in
the form

v (y, t) = 
hres (Hp − y)

Hp
 + ∑ 

i=1

s

Ci (t) sin 
πi

Hp
 y . (23)

At t → ∞ we get: Ci(t) → C
~

i, v(y, ∞) → vst(y). If the boundary y = H excites a reflected wave, then C
~

i ≈ 0 and vst(y)
are determined approximately by the first term on the right-hand side of formula (23).

In the present paper, it is assumed that the density increment ∆ρ at the depth y + vst(y) is proportional to its
stabilized shifts vst(y) = v(0, ∞):

∆ρ (y + vst (y)) = Kcompvst (y) . (24)

We determine the coefficient Kcomp proceeding from the condition: the mass of the deformable medium moving under
the action of the rolling cylinder from the upper layer corresponding to y 2 [0, hres) is equal to the increment of the
underlying layer mass corresponding to y 2 [hres, Hp]. If s = 3, then

Kcomp = 
2ρhresHp

(Hp + µhres)
2
 (hres + 4 (C1 + C3

 ⁄ 3) ⁄ π)
 . (25)

At y = 0 we have vst(0) = hres, therefore

∆ρ (hres) = Kcomp (hres) . (26)

Upon a pass of the cylinder the propagation depth of the deformable layer of the base H
~

 = H − hres. As a
new reference point of the depth, i.e., the quantity y~ (i.e., as a new surface of the deformable medium), we take the
coordinate y = hres. Knowing the density increment of the deformable medium at different depths upon a pass of the
cylinder, we find the new values of its density. As a result of the solution of the problems on the cylinder rolling at
δ > 0 and δ < 0, we also obtained, apart from formulas (4)–(6), (8), (15)–(19), (23)–(26), the relations for determining
M, the values of the forces S, F = T, etc.
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In [2–5] and a number of other works, for modeling the rheological properties of the base that deforms under
the action of the rolling cylinder, we used some of the constitutive equations of the viscoelasticity theory given in [6,
7, 17]. However, no experimental check of the applicability of the constitutive equations has been carried out for par-
ticular real deformable media.

We have made theoretical and experimental studies of the rolling with a slip of cylinders (rollers and wheels)
on a soil [8–10]. At humidities lower than the total moisture capacity the soil is compacted and strengthened under the
action of a load. At such w noncompacted soils are viscoelastic. On the basis of the analysis of the experimentally
elucidated mechanisms of deformation of compatible soils it was suggested [8–10, 13] to model their rheological prop-
erties by the differential equation (3).

The limits within which Eq. (3) can be used for specific soils are determined experimentally. For instance, we
have confirmed its suitability and advantages for sod-podzol slightly loamy soils of a certain mechanical composition
at certain w, t, σ, ε [8, 10, 13], as well as for black earths [11]. For the investigated sod-podzol soil, we have derived
(at ρ = 1.138–1.579 g ⁄ cm3,ω = 16–26%, and ω = 0.93–5.01 sec−1) the following regression equations:

g = 14.655 − 6.716ρ − 0.581ω + 0.085w , (27)

q = 14.981ρ + 0.245ω − 0.315w − 9.654 . (28)

In the present work, we have investigated the influence on the coefficients f0 and c0 characterizing the attenu-
ation with depth of the compression wave of this soil, its density ρ, humidity w, and frequency ω. It has been found
that f0 and c0 markedly decrease as ρ increases from 1.1 to 1.9 g ⁄ cm3 and increase appreciably as w increases from
14 to 30% and ω increases from 2.1 to 5 sec−1 (Fig. 2). If we assume that at 5.01 < ω < 14.2 sec−1 relations (27) and
(28) hold, then the dependences of f0 and c0 on ω are characterized by curves having maxima (Fig. 2c).

As a result of the investigation performed, we have developed a method for calculating at σy < σstr the indices
of the stressed-strained state and compaction of a viscoelastic dispersive medium and other indices for the rolling of
the driven and driving cylinders and a computer program realizing it. The program permits calculating q, g, p, f0, c0,
Ht.p, Hp, ψa, ψb, ψm, (σy)m, krev, S, T, M, h(0, ψ), εy(0, ψ), σy(0, ψ) at various ψ 2 [ψb, ψa], hres, ∆ρ(y + vst(y)), and
other indices. In the investigations of the rolling of cylinders over a soil, we took into account the changes in ρ and
µ given at the soil humidity wpr at its changed new value of its humidity wnew.

The input data for performing the calculations are: R, L, G, v0, δ, ρ, µ, f, wpr, wnew, H and the coefficients
of the dependences g(ρ, ω, w), q = q(ρ, ω, w). With the aid of the programs developed, we performed in the present
work calculations — computer experiments — in which we determined the indices under investigation. In the com-
puter experiments, we considered the rolling with sliding of a roller as well as of the driving cylinder over the soil
whose viscoelastic properties were investigated in [8–10, 13].

Fig. 2. Coefficients f0 and c0 as a function of the density of the soil (a), its
humidity (b), and the angular rate of deformation (c): 1) f0, 2) c0 (ρ = 1.118,
ω = 5.19, w = 20%); a) ω = 5.19, w = 20; b) ρ = 1.118, ω = 5.19; c) ρ =
1.118, w = 20%. ρ, g ⁄ cm3; w, %; ω, sec−1.

983



We have carried out four sets of one-factor experiments (each set consisting of nine experiments) and a com-
plete factor experiment of the type of 23, in which G, v0, and w were varied. Table 1 gives the values of G, v0, w,
and δ for the basic calculation. The factors differing from those that were varied in the given series were assumed to
be the same as in the basic calculation.

The input data for calculating the indices for a pass of the roller are: R = 0.35 m, L = 1.4 m, H = 1 m,
wpr = 18.37%, ρ = 1.118 g ⁄ cm3, f = 0.32, µ = 0.318, δ = −0.1. The characteristics g and q of the soil were deter-
mined by Eqs. (27) and (28).

We have determined the indices of the roller-soil interaction under different conditions (Table 2). The hyster-
esis loops, the σy(εy) curves plotted at y = 0, characterize the viscoelastic properties of the soil. An increase in G from
3 to 5 kN leads to an increase in σy and (εy)res. As v0 increases from 2 to 4 m ⁄ sec, the stresses σy and the deforma-
tions markedly decrease (Fig. 3).

In all experiments, it has been obtained that Ht.p > H; therefore, Hp = H and v(y, t) are described by formula
(19). The calculations have shown that in the considered cases one direct wave was excited on the soil surface at y =
0 and one wave was reflected from the boundary y = H arise. The reflected wave attenuates before it reaches the soil
surface. We have determined the total shifts of the soil caused by the rolling of the cylinder with different velocities
and t = tin as a shift difference v(y, tin) of the propagating direct and reflected waves (Fig. 4).

TABLE 1. Influencing Factors and Intervals of Their Chang

Influencing factors Base calculation
(in one-factor experiments)

Intervals of variation of
factors  in  one-factor

experiments

Lower/upper levels of
variation of factors in

complete factor experiments
of the 23 type

G, kN 5 3–8 1/5

v0 , m ⁄ sec 2.1 1–5 2/4

w, % 20 14–26 14/24

δ —0.1 –0.3–(+0.2) —

TABLE 2. Indices of the Roller-Soil Interaction under Different Conditions

Indices

Influencing factors

G, kN v0 , m ⁄ sec w, %

3.0 8.0 1.0 5.0 14 26

(σy)m, kPa 22.18 42.84 27.64 37.74 35.24 25.81

ψa, deg 19.67 31.48 33.52 14.26 20.85 33.71

ψb, deg – 8.28 – 9.44 – 7.66 – 11.82 – 8.58 – 9.38

ψm, deg 8.63 16.86 20.15 1.82 9.31 18.66

htot, cm 2.04 5.15 5.82 1.08 2.29 5.88

hres, cm 1.68 4.68 5.51 0.34 1.90 5.42

krev 0.18 0.09 0.05 0.69 0.17 0.08

∆ρ(hres), g ⁄ cm3 0.0376 0.1029 0.1205 0.0076 0.0413 0.1303 

ρ~0, g ⁄ cm3 1.1710 1.2363 1.2539 1.1410 1.1113 1.2247

ρ~(0.05), g ⁄ cm3 1.1601 1.2311 1.2478 1.1406 1.1112 1.2156

S, kN 0.38 3.95 1.78 0.13 0.69 1.58

F, kN 1.79 6.68 4.96 2.92 3.0 3.49

tin, sec 0.0894 0.1309 0.2767 0.0350 0.0942 0.1379

Note. Base calculation: G = 5 kN, v0 = 2.1 m ⁄ sec, w = 20%, δ = −0.1.
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As a result of the calculations, it has been obtained that the soil density increment after a pass of the roller
at depth hres increases with increasing G and w and decreases with increasing v0 (Table 2). The dependence of the soil
density on the depth after a pass of the roller is described by the straight line equation. The straight lines ρ~(y) ob-
tained at various v0 are presented in Fig. 5.

We conducted a complete factor computer experiment of the 23 type and processed its results by the method
of [18]. The following notation was used: x~1 = G, x~2 = v0, x~3 = w. The natural values of the variables x~1, x~2, x~3 were
transformed into the corresponding coded ones: x

_
1, x

_
2, x

_
3 by the formula x

_
j = (x~j − x~j0) ⁄ Ij, where j = 1, 2, 3 are the

factor numbers; x~j0 is the natural value of the main factor level; Jj = x~j − x~j0 is the variation interval. Correlation
dependences of the investigated indices on G, v0, and w have been obtained. The Fisher criterion check at a 5% sig-
nificance level has shown that the regression equations obtained are adequate. The stress (σy)m and the density ρ~(0.05)
are characterized by the following regression equations (with coded values of the variables and significant coefficients
at x

_
1, x

_
2, x

_
3 and products of these variables):

(σy)m = 21.89 + 10.41x
_

1 + 1.39x
_

2 − 1.91x
_

3 + 0.54x
_

1x
_

2 − 0.78x
_

1x
_

3 , (29)

ρ~ (0.05) = 1.145 + 0.013x
_

1 − 0.011x
_

2 + 0.054x
_

3 . (30)

Fig. 3. Hysteresis loops for the cylinder rolling over the viscoelastic soil: a) at
different vertical loadings on the axis [1, 2, and 3) G = 3, 5, and 9 kN (v0 =
2 m ⁄ sec; w = 20%)]; b) at different velocities [1, 2, and 3) v0 = 1, 2, and 4
m ⁄ sec (G = 5 kN, w = 20%)]. σy, kPa.

Fig. 4. Change in the vertical shifts of the soil with the depth of its defor-
mable layer caused by the driving cylinder rolling at different velocities with a
below-unbounded region of deformation propagation: 1, 2, and 3) v0 = 2, 3,
and 4 m ⁄ sec (G = 5 kN, δ = 0.1, H → ∞). v(y, tin), cm; y, m.

Fig. 5. Dependence of the soil density on the depth (G = 5 kN, w = 20%): 1)
before the pass of the roller; 2, 3, and 4) at v0 = 1, 2, and 5 m ⁄ sec. ρ,
g ⁄ cm3; y, m.
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Analysis has shown that the dominant effect on (σy)m, htot, hres, krev, and S is produced by the load G, while
the influence on these indices of the velocity v0 and the soil humidity w is also significant. The values of ρ~0,
∆ρ(hres), and ρ~(0.05) are strongly influenced by all the above factors. As G and w increase, there is an increase in the
values of htot, hres, ρ

~
0, ∆ρ(hres), ρ

~(0.05), and S. At v0 = 3 m ⁄ sec and w = 19.5% an increase in G from 1 o 5 kN
leads to an increase in (σy)m, ψm, htot, hres, ∆ρ(hres), ρ

~(0.05), frol, tin by a factor of 2.81, 2.49, 3.28, 4.03, 3.97, 1.02,
2.61, and 1.54, respectively.

With increasing v0 the values of (σy)m, hrev, and krev increase and those of the other indices decrease. At G
= 3 kN and w = 19.5% an increase in v0 from 2 to 4 m ⁄ sec leads to an increase in (σy)m and krev by a factor of
2.81 and 2.30, respectively. Under the same conditions htot, ∆ρ(hres), ρ

~(0.05), frol, and tin decrease by a factors of
1.96, 2.96, 1.02, 2.63, and 2.27, respectively.

An increase in w leads to a change in the characteristics of the viscoelastic properties of the soil: q decreases
and g increases. With a rolling roller an increase in w leads to an increase in htot, hres, ρ

~
0, ∆ρ(hres), ρ

~(0.05), frol and
to a decrease in krev. This points to the fact that the properties of a viscoelastic soil approach the viscous ones. When
ρ → ρlim, we have q → Ee, g → 0, krev → 1, i.e., the properties of the soil approach the elastic ones.

The calculations performed by the proposed method make it possible to estimate the degree of influence on
the investigated indices of the measures proposed to optimize the operating conditions and physical sizes of cultiva-
tion rollers with regard to the agrotechnical requirements for the soil density. The results obtained can be used to
develop computing methods for estimating the indices of the interaction of rigid and elastic wheels of mobile vehi-
cles with the soil.

CONCLUSIONS

1. Analytical solutions of problems on the slipping rolling of a circular cylinder over a viscoelastic dispersive
base (in the particular case — soil) with the formation of a deep trace have been obtained.

2. The viscoelastic properties of a deformable medium have been described by the differential equation (3).
The parameters of the constitutive equation (3) and their dependences on ρ, ω, and w have been determined experi-
mentally for a particular dispersive medium — soil of certain mechanical composition and physical state.

3. Mathematical modeling of the propagation process of decaying viscoelastic strain waves and other processes
proceeding in a viscoelastic medium deformed by the harmonic mechanism by a rolling cylinder has been performed.

4. Dependences of the coefficients c0 and f0 characterizing the attenuation with depth of the compressive
strain wave of the investigated soil on its density, humidity, and the frequency of deformation by the harmonic mecha-
nism have been revealed. An increase in ρ leads to a decrease in c0 and f0, and an increase in ω (in the real time
interval) and w is followed by an increase in these coefficients.

5. A method has been proposed for calculating the compression stresses, the compressive deformation, the
propagation depth of compressive deformation of a dispersive medium, its density increment at a different depth, and
other indices of the compacting action of a rolling cylinder on a deformable medium. Formulas and algorithms have
been obtained for calculating the rolling resistance of the driven and driving cylinders and the traction properties of
the driving cylinder. Calculations are performed with account for the interrelated influence of the basic factors: G, R,
L, v0, δ, w, H, ρ, q, g, and f.

6. The computer program developed for realizing the proposed method has made it possible to determine the
indices of the interaction of the driven and driving cylinders with sod-podzol soil. The calculations have been made
on the basis of the initial data of the results of the field tests of the soil properties.

7. The indices characterizing the stressed-strained state and the soil compaction caused by the rolling of a cyl-
inder and the rolling resistance at various values of G, v0, δ, ρ, and w have been determined.

8. Calculations by the proposed method make it possible to predict the change in the rheological properties of
the soil caused by the rolling of a cylinder and to estimate quantitatively the influence of G, v0, ω, and w on its set-
tlement and density.

9. As a result of the calculations performed, it has been shown that with increasing density of the soil its
properties approach elastic ones, and with increasing humidity they approach viscous properties.
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NOTATION

Ci(t) and C
~

i, coefficients in formula (23) and in the expression for v(y, ∞); c0 and f0, coefficients charac-
terizing the attenuation with depth of the first direct compression wave; cn, fn, coefficients in formula (19) charac-
terizing the attenuation with depth of direct waves; Ed, deformation modulus of the viscoelastic medium, kPa; Ee,
coefficient of elasticity of the soil, kPa; F, horizontal force applied to the cylinder axis, kN; f, coefficient of sliding
friction between the cylinder and the base; frol, coefficient of cylinder rolling resistance determined without taking into
account the sliding friction forces; G, vertical force applied to the cylinder axis, kN; g, transformed dimensionless
characteristic of the viscoelastic properties of a deformable medium (in the particular case — soil); H, depth of propa-
gation of the deformable layer of the viscoelastic medium before its loading (base deformed by the cylinder rolling
over it), m; Hp, actual depth of propagation of compressive deformation of the viscoelastic medium after one rotation
of the cylinder about its axis, m; Ht.p, theoretically possible depth of propagation of compressive deformation of the
viscoelastic medium after one rotation of the cylinder about its axis with H → ∞, m; H

~
, depth of propagation of the

deformable layer of the base after one pass of the cylinder, m; h(0, ψ), absolute compressive deformation of the vis-
coelastic medium by the cylinder at the contact surface points, cm; hrev, hres, and htot, reversible deformation, residual
compressive deformation after one pass of the cylinder, and total deformation of the viscoelastic medium, cm; Ij, vari-
ation interval of the jth factor in the complete factor experiment; Kcomp, compression ratio; krev, part of the reversible
deformation of the medium in its total deformation; L, cylinder length, m; ln, rn, coefficients characterizing the attenu-
ation with depth of waves reflected from the boundary y = H; M, (driving or drag) torque, kN⋅m; N, resultant of the
vertical elementary reactions of the base distributed over the contact surface, kN; O1, origin of the mobile rectangular
coordinate system O1x1y1z1 and pole of the cylindrical coordinate system R, ψ, z1; O, origin of the mobile rectangular
coordinate system Oxyz; Ox, Oy, and Oz, axes of the immobile rectangular coordinate system; O1x1, O1y1, and O1z1,
axes of the mobile rectangular coordinate system; p, parameter of the constitutive differential equation (3) for the vis-
coelastic medium (characteristic of the viscoelastic properties of the medium), sec−1; q, parameter of the constitutive
differential equation (3) for the viscoelastic medium (characteristic of the viscoelastic properties of the medium), kPa;
R, cylinder radius, m; s, number of collocation points; S, resultant of the horizontal components of the base reactions
normal to the outer surface of the cylinder distributed over the contact surface, kN; T, resultant of the horizontal ele-
mentary base reactions distributed over the contact surface, kN; t, time, sec; tin, time of cylinder-base interaction in
one rotation of the cylinder about its axis, sec; u(y, t), horizontal shifts of the deformable medium, cm; v(y, t), vertical
shifts of the deformable medium, cm; vst(y), stabilized vertical shifts of the deformable medium, cm; v0, velocity of
the cylinder axis, m ⁄ sec; w, absolute (weight) humidity of the soil, %; wpr and wnew, previous and new values of the
soil humidity, %; X and Y, values of the horizontal and vertical components of the contact stress at each contact point
of the cylinder and base, kPa; x~1, x~2, x~3 and x

_
1, x

_
2, x

_
3, natural and coded values of the variables G, v0, w in the re-

gression equations; x~j0, natural value of the main variation level of the factor; y and y~, vertical coordinates (depth) of
particles of the deformable layer of the medium (soil) before the first loading and before the next cycle of deforma-
tion of the medium, cm; α0, angle characterizing the position of point A at which the cylinder comes into contact
with the deformable base, rad; β, characteristic of the viscoelastic properties of the deformable medium, sec−1; ∆ρ, in-
crement of the soil compactness, g ⁄ cm3; ∆ρ(hres), increment of the soil compactness at depth hres, g ⁄ cm3; δ, slipping
coefficient; εx and εy, horizontal and vertical relative deformation of the base; εy(0, ψ), finite relative compressive de-
formation of the base at the points of the cylinder contact line; (εy)m, maximum relative compressive deformation of
the base; (εy)res, relative residual compressive deformation of the base; µ, Poisson ratio; ρ, density of the deformable
medium, g ⁄ cm3; ρ~0, soil density after one pass of the roller at y~ = 0, g ⁄ cm3; ρ~(0.05), soil density at y~ = 0.05 m,
g ⁄ cm3; ρlim, highest possible density of the soil with a nondestructed structure, g ⁄ cm3; σr, value of the radial compo-
nent of the contact stress, kPa; σx and σy, values of the horizontal and vertical components of the stress σr, kPa;
σy(0, ψ), compressive stresses of the base at the points of the cylinder contact line; (σy)m, maximum compressive
stress, kPa; σstr, ultimate strength, kPa; τ, value of the tangential component of the contact stress, kPa; τx and τy, val-
ues of the horizontal and vertical components of the stress τ, kPa; ϕ1(y), ϕ2(y), ϕ3(y), functions determined from (13)
at t = tin; ψa and ψb, rolling-on and rolling off angles of the cylinder, rad; ψ(t) (at t 2 [0, tin]), current angle of the
cylinder-base contact, rad; ψm, contact angle at which compressive stresses acquire the maximum value, rad; ω, fre-
quency of the harmonic deformation process (for the rolling cylinder — its angular velocity), sec−1. Subscripts: a and
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b, subscripts for the rolling-on and rolling-off angles of the cylinder (according to points A and B in Fig. 1); m,
maximal value; n, summation index in formula (19); i, collocation point number; j, number of the varied influencing
factor in the complete factor experiment; j0, main level of the jth varied factor; r, radial component; in, interaction; d,
deformation; rol, rolling; new, new value; rev, reversible; res, residual; tot, total deformation; pr, previous value; lim,
limiting value; str, strength; p, propagation; st, stabilized shifts and deformations; t.p, theoretical value of the deforma-
tion propagation depth; e, elasticity; comp, compactness.
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